Ядерный синтез

на страницах сайта 

www.electrosad.ru

 

Это научно-популярная статья, в которой я хочу рассказать интересующимся ядерным синтезом о его принципах. Это "холодный" и "горячий" термояд, радиоактивный распад, ядерная реакция расщепления и имеющиеся данные о синтезе широкого спектра веществ в так называемом процессе трансмутации.
Что же является тем «философским камнем», который позволит человеку получить в свое распоряжение ядерный синтез?
- На мой взгляд, это знания! Знания без догм и шарлатанства! При постижении которых будут провалы и покорения новых вершин.
Возможно прочитав ее, Вы заинтересуетесь этими проблемами и в будущем займетесь ими  основательно подготовившись. Здесь я попытался рассказать об основных принципах заложенных в природе вещества — материи и лишний раз подтверждающих представление о простоте и оптимальности природы.

 
 

Что такое ядерный синтез?

В литературе мы часто находим термин «Термоядерный синтез».

Термоядерная реакция, термоядерный синтез (синоним: ядерная реакция синтеза)

— разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые ядра. http://ru.wikipedia.org/wiki/ введите для поиска - Термоядерный синтез  

Точнее, под термином «Термоядерный синтез» принято считать «Ядерный синтез» с выделением энергии (тепла).

 

В то же время, понятие «Ядерный синтез» включает:

  1. Разделение ядра исходного, более тяжелого элемента обычно на два легких ядра, с образованием новых химических элементов.
    При выполнении условия равенства числа нуклонов тяжелого ядра сумме нуклонов легких ядер плюс получившиеся в процессе деления свободные нуклоны. И суммарная энергия связи в тяжелом ядре равна сумме энергий связи в легких ядрах плюс выделившаяся свободная (избыточная энергия). Примером может служить ядерная реакция деления ядра U.
  2. Соединение двух меньших ядер в одно большее, с образованием нового химического элемента.
    При выполнении условия равенства числа нуклонов тяжелого ядра сумме нуклонов легких ядер плюс получившиеся в процессе деления свободные нуклоны. И суммарная энергия связи в тяжелом ядре равна сумме энергий связи в легких ядрах плюс выделившаяся свободная (избыточная энергия). Примером может служить получение трансурановых элементов физических экспериментах «мишень исходного вещества — ускоритель — ускоренные ядра (протоны).

Для этого процесса существует особое понятие Нуклеосинтез — процесс образования ядер химических элементов тяжелее водорода в ходе реакции ядерного синтеза (слияния).

В процессе первичного нуклеосинтеза образуются элементы не тяжелее лития, теоретическая модель Большого Взрыва предполагает следующее соотношение элементов:

H — 75%, 4He — 25%, D — 3·10−5, 3He — 2·10−5, 7Li — 10−9,

 

что хорошо согласуется с экспериментальными данными определения состава вещества в объектах с большим красным смещением (по линиям в спектрах квазаров.

Звёздный нуклеосинтез — собирательное понятие для ядерных реакций образования элементов тяжелее водорода, внутри звёзд, а также, в незначительной степени, на их поверхности.

 

В том и другом случае, скажу возможно кощунственную для некоторых фразу, синтез может проходить как при выделении избыточной энергии связи, так и при поглощении недостающей. Поэтому корректнее говорить не о термоядерном синтезе, а о более общем процессе — ядерном синтезе.

 

Условия существования ядерного синтеза

Общеизвестны критерии существования термоядерного синтеза (для реакции D-T), который возможен при одновременном выполнении двух условий:

 

1
Скорость соударения ядер соответствует температуре плазмы
 
T > 108 K
2
Соблюдение критерия Лоусона
 
nτ > 1014 см−3·с

 

где n — плотность высокотемпературной плазмы, τ — время удержания плазмы в системе.

От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время (2012) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии. И срок его пуска уже не первый раз откладывается.

или

Практически те же критерии, но более общие, для синтеза ядер необходимо сблизить их на расстояние порядка 10−15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания.

 

 

Условия преобразования

Условия преобразования известны, это сближение ядер до расстояний когда начинают действовать внутриядерные силы.

Но это простое условие, не так-то просто выполнить. Существуют кулоновские силы положительно, одноименно заряженных ядер, участвующих в ядерной реакции, которые необходимо преодолеть чтобы сблизить ядра на то расстояние когда начинают действовать внутриядерные силы и ядра объединяются.

Что надо для преодоления кулоновских сил?

 

Если абстрагироваться от необходимых энергетических затрат на это, то совершенно определенно можно сказать, что сблизив любые два и более ядер на расстояние меньшее 1/2 диаметра ядра мы приведем их к состоянию когда внутриядерные силы приведут к их слиянию. В результате слияния образуется новое ядро, масса которого будет определяться суммой нуклонов в исходных ядрах. Образовавшееся ядро, в случае его неустойчивости, в результате того или иного распада придет через некоторое время в некоторое стабильное состояние.

Обычно ядра участвующие в процессе синтеза существуют в виде ионов, частично или полностью потерявшие электроны.

 

Сближение ядер достигается несколькими путями:

  1. Разогрев вещества для придания его ядрам необходимой энергии (скорости) для возможного их сближения,
  2. Создание сверхвысокого давления в области синтеза достаточного для сближения ядер исходного вещества,
  3. Создание внешнего электрического поля в зоне синтеза достаточное для преодоления кулоновских сил,
  4. Создание сверхмощного магнитного поля сжимающего ядра исходного вещества.

Оставив пока для сохранения пока терминологию, посмотрим что такое термоядерный синтез.

 

Последнее время мы редко слышим об исследованиях «горячего» термоядерного синтеза.

Нас одолевают свои проблемы, более жизненные для нас, чем для всего человечества. Да это и понятно кризис продолжается и мы стремимся выжить.

Но исследования и работы в области термоядерного синтеза продолжаются. Существует два направления работ:

  1. так называемый, «горячий» ядерный синтез,
  2. «холодный» ядерный синтез, преданный анафеме, официальной наукой.

 

Причем их отличие горячий — холодный только описывает условия, которые необходимо создать для протекания данных реакций.

Имеется в виду что в «горячем» ядерном синтезе продукты участвующие в термоядерной реакции надо разогреть, чтобы придать их ядрам определенную скорость (энергию) для преодоления кулоновского барьера, чем создать условия для протекания реакции ядерного синтеза.

 

В случае «холодного» ядерного синтеза — синтез протекает при внешних нормальных условиях (усредненных по объему установки, а температура а зоне синтеза (в микро объеме) полностью соответствует выделяемой энергии), но поскольку существует сам факт ядерного синтеза, условия необходимые для слияния ядер так же выполняются. Как Вы понимаете требуются определенные оговорки и уточнения, когда говорят о «холодном» ядерном синтезе. Поэтому едва ли применим для этого термина «холодный», скорее подходит обозначение, LENR (низко энергетические ядерные реакции).

 

Но, думаю Вы понимаете, что термоядерная реакция идет с выделением энергии и в обоих случаях ее результат «горячий» - это выделение тепла. Так например при «холодном» ядерном синтезе, как только количество фактов синтеза станет достаточно большим температура активной среды начнет повышаться.

Не боясь быть нудным повторю, суть ядерного синтеза заключается в сближении ядер вещества участвующего в реакции на расстояние когда на участвующие в ядерном синтезе атома начинают действовать (преобладать) внутриядерные силы под действием которых ядра сольются.



 

«Горячий» ядерный синтез

Эксперименты с «Горячим» ядерным синтезом проводятся на сложных и дорогих установках использующих самые передовые технологии и позволяющих разогревать плазму до температур более 108К и удерживать ее в вакуумной камере с помощь сверх сильных магнитных полей достаточно длительное время (в промышленной установке это должно выполняться в непрерывном режиме - это все время ее работы, в исследовательских это может быть режим одиночных импульсов и на время необходимое для протекания термоядерной реакции, в соответствии с критерием Лоусона (если интересно, см. http://ru.wikipedia.org/wiki/ введите для поиска - Критерий Лоусона).

Существует несколько типов таких установок, но наиболее перспективной считается установка типа «ТОКАМАК» - ТОроидальная КАмера с МАгнитными Катушками.

 

Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза  А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем.  

Термин «токамак» был придуман позже И. Н. Головиным, учеником академика Курчатова. Первоначально он звучал как «токамаг» — сокращение от слов «тороидальная камера магнитная», но Н. А. Явлинский, автор первой тороидальной системы, предложил заменить «-маг» на «-мак» для благозвучия. В последующем эта версия была заимствована всеми языками.

 

Первый токамак был построен в 1955 году, и долгое время токамаки существовали только в СССР. Лишь после 1968 года, когда на токамаке T-3, построенном в Институте атомной энергии им. И. В. Курчатова под руководством академика Л. А. Арцимовича, была достигнута температура плазмы 10 млн градусов, и английские ученые со своей аппаратурой подтвердили этот факт, в который поначалу отказывались верить, в мире начался настоящий бум токамаков. Начиная с 1973 программу исследований физики плазмы на токамаках возглавил Кадомцев Б. Б.

 

Официальная физика считает токамак единственно перспективным устройством для осуществления управляемого термоядерного синтеза.


 

В настоящее время (2011) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии. (Закончено проектирование)

 

Проект iter — путь — проект международного экспериментального термоядерного реактора.
Проектирование реактора полностью закончено и выбрано место для его строительства на юге Франции, в 60 км от Марселя, на территории исследовательского центра Кадараш.
Текущие планы:
Исходныная дата, гг. Новая дата, гг.  
2007—2019 2010—2022 период строительства реактора.
2026 2029 Первые реакции термоядерного синтеза
2019—2037 2022 — 2040 ожидаются эксперименты, по истечении которых проект будет закрыт,
После 2040 2043 реактор станет производить электроэнергию (при условии успешных экспериментов)
В связи с экономической ситуацией возможна задержка еще на 3 года, что возможно приведет к необходимости доработки проекта. Это приведет к общей задержке примерно на 5 лет.
 В проекте ITER принимают участие Россия, США, Китай, ЕС, Республика Корея, Индия и Япония. Поскольку реактор будет построен на территории Евросоюза, то он будет финансировать 40% стоимости проекта. Остальные страны-участницы финансируют по 10% проекта. Первоначально общая стоимость этой программы оценивалась в 13 миллиардов евро. Из них 4,7 миллиарда будет затрачено на капитальное строительство демонстрационной установки. Термоядерная мощность реактора ITER составит 500 МВт. В последующем стоимость увеличилась до 15 млрд евро, аналогична сумма потребуется для проведения исследований.

В Японии ранее уже начинали строительство ИТЕР на севере острова Хонсю в местечке Роккасе префектуры Аомори, однако в Токио вынуждены были отказаться от самостоятельного возведения реактора, так как в проект необходимо было вложить 600-800 миллиардов иен (около $6-8 миллиардов).


 

«Холодный» ядерный синтез

Так называемый «холодный» ядерный синтез (как я уже говорил, он холодный пока число событий синтеза — слияния мало), не смотря на отношение официальной науки, тоже имеет место быть.

 

Логика подсказывает, что условия для сближения ядер могут быть достигнуты и другими способами. Пока мы просто не можем понять физику процессов происходящих в микромире, объяснить их, а поэтому получить повторяемость эксперимента и в результате практического применения.

Инструментальные подтверждения протекания ядерных реакций есть.

 

В множестве экспериментов зарегистрированы признаки присущие ядерному синтезу (как отдельные так и в совокупности): выделения нейтронов, выделение тепла, побочные излучения, продукты ядерного синтеза.

Логика подсказывает возможность существования ЯС без выделения нейтронов, побочных излучений и даже с поглощением энергии. Но всегда имеет место появление новых химических элементов в продуктах ядерного синтеза.

Например может иметь место ядерная реакция без нейтронов и других излучений

 

D + 6Li 2[4He] + 22,4 MeV

 

Больше того в природе зафиксированы подобные явления.

 

Ядерный синтез при расщепление вещества

Радиоактивный распад.

В природе известен синтез новых химических элементов в процессе радиоактивного распада.

Радиоактивный распад (от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов. Процесс радиоактивного распада также называют радиоактивностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Виды радиоактивного распада

Естественная радиоактивность 
самопроизвольный распад ядер элементов, встречающихся в природе
 
Искусственная радиоактивность
самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции или при внешнем воздействии на исходное ядро, приводящем последнее в неустойчивое состояние
 

 

 

Расщепление вещества, 238U

Ядерную реакцию расщепления ядра Урана 238U можно тоже отнести к реакциям ядерного синтеза, с тем отличием, что происходит синтез более легких ядер при том или ином расщеплении тяжелого ядра 238U. При этом выделяется энергия которую и используют в ядерной энергетике. Но не буду здесь рассказывать о цепной реакции, ядерном реакторе...

Сказанного уже хватит чтобы отнести реакцию расщепления ядра к категории реакций ядерного синтеза.

 

Трансмутации вещества

Слово трансмутации, так не любимое официальной наукой, возможно за то что им, в былые времена, (когда ученых званий еще и не было) активно пользовались алхимики, все таки наиболее полно отражает процесс преобразования вещества.

 

Трансмутация (от лат. trans — сквозь, через, за; лат. mutatio — изменение, перемена)

— превращение одного объекта в другой. Термин имеет несколько значений, но мы опустим значения не относящиеся к нашей теме:

 

  • Трансмутация в физике — превращение атомов одних химических элементов в другие в результате радиоактивного распада их ядер либо ядерных реакций; в настоящее время в физике термин употребляется редко.

 

А возможно слово «превращение» им кажется сродни слову «волшебство», но ведь имеет место быть всем понятное естественное «превращение» изотопов одних химических элементов в другие химические элементы.

Среди тяжелых естественных радиоактивных элементов известно 3 семейства 23892U, 23592U, 23290U после ряда последовательных α и β распадов превращаются в стабильные 20682Pb, 20782Pb, 20882Pb.

 

И ряд других [Л. 5]:

 




 

И слово превращение здесь весьма кстати.

 

Конечно, кому это ближе, могут с полным правом применить термин синтез.

 

Здесь нельзя не упомянуть работы по очистке промышленных стоков, проводившиеся Вачаевым А.В.[Л.7], которые привели к обнаружению совершенно новых эффектов ядерного синтеза, эксперимент Уруцкоева Л.И.[Л.6], подтвердивший возможность ядерного преобразования (трансмутации) и исследования проведенные Паньковым В.А., Кузьминым Б.П.[Л.10], полностью подтвердившие результаты Вачаева А.Л по преобразование вещества в электрическом разряде. Но подробно Вы можете посмотреть их работы по ссылкам.

Экспериментаторами обсуждается возможность преобразования вещества в растениях.

Термином "Трансмутация" можно обозначить и синтез сверхтяжелых элементов.

 

Синтез сверхтяжелых элементов тоже ядерный синтез

Первые Трансурановые элементы (ТЭ) были синтезированы в начале 40-х гг. 20 в. в Беркли (США) группой учёных под руководством Э. Макмиллана и Г. Сиборга, удостоенных Нобелевской премии за открытие и изучение этих элементов. Известно несколько способов синтеза ТЭ. Они сводятся к облучению мишени потоками нейтронов или заряженных частиц. Если в качестве мишени используется U, то с помощью мощных нейтронных потоков, образующихся в ядерных реакторах или при взрыве ядерных устройств, можно получить все ТЭ до Fm (Z = 100) включительно. Процесс синтеза состоит либо в последовательном захвате нейтронов, причём каждый акт захвата сопровождается увеличением массового числа А, приводящим к β - распаду и увеличению заряда ядра Z, либо в мгновенном захвате большого числа нейтронов (взрыв) с длинной цепочкой β - распадов. Возможности этого метода ограничены, он не позволяет получать ядра с Z > 100. Причины - недостаточная плотность нейтронных потоков, малая вероятность захвата большого числа нейтронов и (что наиболее важно) очень быстрый радиоактивный распад ядер с Z > 100.

 

Для синтеза далёких ТЭ используется два типа ядерных реакций - слияния и деления. В первом случае ядра мишени и ускоренного иона полностью сливаются, а избыточная энергия образовавшегося возбуждённого составного ядра снимается путём «испарения» (выделения) нейтронов. При использовании ионов С, О, Ne и мишеней из Pu, Cm, Cf образуется сильно возбуждённое составное ядро (энергия возбуждения ~ 40-60 Мэв). Каждый испаряемый нейтрон способен унести из ядра энергию в среднем порядка 10-12 Мэв, поэтому для «остывания» составного ядра должно вылететь до 5 нейтронов. С испарением нейтронов конкурирует процесс деления возбуждённого ядра. Для элементов с Z = 104-105 вероятность испарения одного нейтрона в 500-100 раз меньше вероятности деления. Это объясняет малый выход новых элементов: доля ядер, которые «выживают» в результате снятия возбуждения, составляет всего 10-8-10-10 от полного числа ядер мишени, слившихся с частицами. В этом кроется причина того, что за последние 20 лет синтезировано всего 5 новых элементов (Z = 102-106).

  В ОИЯИ разработан новый метод синтеза ТЭ, основанный на реакциях слияния ядер, причём в качестве мишеней используются плотно упакованные устойчивые ядра изотопов Pb, а в качестве бомбардирующих частиц сравнительно тяжёлые ионы Ar, Ti, Cr. Избыточная энергия ионов расходуется на «распаковку» составного ядра, и энергия возбуждения оказывается низкой (всего 10-15 Мэв). Для снятия возбуждения такой ядерной системы достаточно испарения 1-2 нейтронов. В итоге получается весьма заметный выигрыш в выходе новых ТЭ. Этим методом был осуществлен синтез ТЭ с Z = 100, Z = 104 и Z = 106.

 

В 1965 Флёров предложил использовать для синтеза ТЭ вынужденное деление ядер под действием тяжёлых ионов. Осколки деления ядер под действием тяжёлых ионов имеют симметричное распределение по массе и заряду с большой дисперсией (следовательно, в продуктах деления можно обнаружить элементы с Z значительно, большим, чем половина суммы Z мишени и Z бомбардирующего иона). Экспериментально было установлено, что распределение осколков деления становится шире по мере использования всё более тяжёлых частиц. Применение ускоренных ионов Xe или U позволило бы получить новые ТЭ в качестве тяжёлых осколков деления при облучении урановых мишеней. В 1971 в ОИЯИ были ускорены ионы Xe с помощью 2 циклотронов, которыми облучалась урановая мишень. Результаты показали, что новый метод пригоден для синтеза тяжёлых ТЭ.

 

Для синтеза ТЭ делают попытки использовать реакция (слияние) ядер титана-50 и калифорния-249. По расчетам, там вероятность образования ядер 120-го элемента несколько выше.

 

Устойчивые состояния ядер

Само наличие короткоживущих и долгоживущих изотопов, стабильных ядер и современное знания об их строении говорят об определенных зависимостях и сочетаниях количества нуклонов в ядре, которые придают им способность существовать в указанные выше сроки.

 

Это же подтверждает и отсутствие других химических элементов.

Логика подсказывают существования законов определяющих определенный нуклонный состав ядра (подобно его электронным оболочкам).

Или другими словами формирование ядра происходит по определенным квантованным зависимостям, которые подобны электронным оболочкам. Других устойчивых (долгоживущих) ядер (атомов) химических элементов просто не может быть.

 

В то же время это не отрицает возможность существования других сочетаний нуклонов и их количества в ядре. Но время жизни такого ядра существенно ограничено.

Что касается неустойчивых (короткоживущих) ядер (атомов), то там могут, в определенных условиях, существовать ядра имеющие другие сочетания нуклонов и их количества в ядре, по сравнению со стабильными ядрами и во множестве их сочетаний.

 

Наблюдения показывают, что при увеличении количества нуклонов (протонов или нейтронов) в ядре существуют определённые числа, при которых энергия связи следующего нуклона в ядре намного меньше, чем последнего. Особой устойчивостью отличаются атомные ядра, содержащие магические числа 2, 8, 20, 28, 50, 82, 114, 126, 164 для протонов и 2, 8, 20, 28, 50, 82, 126, 184, 196, 228, 272, 318 для нейтронов. (Жирным выделены дважды магические числа, то есть магические и для протонов и для нейтронов)

 

Магические ядра являются наиболее устойчивыми. Это объясняется в рамках оболочечной модели: дело в том, что протонные и нейтронные оболочки в таких ядрах заполнены — как и электронные у атомов благородных газов.

Согласно этой модели, каждый нуклон находится в ядре в определённом индивидуальном квантовом состоянии, характеризуемом энергией, моментом вращения (его абсолютной величиной j, а также проекцией m на одну из координатных осей) и орбитальным моментом вращения l.

 

Оболочечная модель ядра фактически является полуэмпирической схемой, позволяющей понять некоторые закономерности в структуре ядер, но не способной последовательно количественно описать свойства ядра. В частности, ввиду перечисленных трудностей непросто выяснить теоретически порядок заполнения оболочек, а следовательно, и «магические числа», которые служили бы аналогами периодов таблицы Менделеева для атомов. Порядок заполнения оболочек зависит, во-первых, от характера силового поля, которое определяет индивидуальные состояния квазичастиц, и, во-вторых, от смешивания конфигураций. Последнее обычно принимается во внимание лишь для незаполненных оболочек. Наблюдаемые на опыте магические числа общие для нейтронов и протонов (2, 8, 20, 28, 40, 50, 82, 126) отвечают квантовым состояниям квазичастиц, движущихся в прямоугольной или осцилляторной потенциальной яме со спин-орбитальным взаимодействием (именно благодаря ему и возникают числа 28, 40, 82, 126)

 

Физика микромира и наносекунд

Законы физики едины везде и не зависят от размеров систем где они действуют. И нельзя говорить об аномальных явлениях. Любая аномальность говорит о нашем непонимании происходящих процессов и сути явлений. Только в каждом случае они могут проявляться по разному поскольку в каждой ситуации накладываются свои граничные условия.

 

Например:

  • В масштабах космоса имеет место хаотическое движение вещества.
  • В галактических масштабах мы имеем упорядоченное движение вещества.
  • При уменьшении рассматриваемых объемов до размера планет движение вещества тоже упорядоченное, но его характер меняется.
  • При рассмотрении объемов газов и жидкостей содержащих группы атомов или молекул движение вещества приобретает хаотический характер (Броуновское движение).
  • В объемах соизмеримых с размером атома и менее, вещество снова приобретает организованное движение.

 

Поэтому учитывая граничные условия можно наткнуться на совершенно необычные для нашего восприятия явления и процессы.

 

Как сказал кто-то из старых философов: «Бесконечно малое может быть бесконечно большим». Перефразируя, можно сказать и про вещество, «В бесконечно малом скрыта бесконечно большие ...» Вместо многоточия поставить : давление, температура, напряженность электрического или магнитного полей.

И это подтверждают имеющиеся данные о величине энергии молекулярных связей, кулоновских, внутриядерных сил (энергии связи нуклонов в ядре).

 

Поэтому в микромире возможны сверхвысокие давления, сверх высокие напряженности электрического и магнитного поля и сверхвысокие температуры. Чем хорошо использование возможностей микро объемов (мира), то что на получение этих сверх значений, чаще всего, не нужны огромные энергетические затраты.



 

Некоторые примеры имеющие признаки ядерного синтеза:

  1. 1. В 1922 году Вендт и Айрион изучали электровзрыв тонкой вольфрамовой проволочки в вакууме [Wendt 1922]. Главным результатом этого эксперимента является появление макроскопического количества гелия – экспериментаторы получали около одного кубического сантиметра газа (при нормальных условиях) за один выстрел, что давало основания им предположить о протекании реакции деления ядра вольфрама.
  1. В эксперименте Араты 2008 года, как и в эксперименте Флейшнера-Понса в 1989-м, производится насыщение кристаллической решётки палладия дейтерием. В результате происходит аномальное выделение тепла, которое у Араты продолжалось 50 часов после прекращения подачи дейтерия. То, что это ядерная реакция, подтверждает наличие гелия в продуктах реакции, которого там не было до того.
  2. Реактор М.И. Солина (г. Екатеринбург) представляет собой обычную вакуумную плавильную печь, где электронным лучом с ускоряющим напряжением 30 кВ расплавлялся цирконий [Солин 2001]. При определённой массе жидкого металла начинались реакции, которые сопровождались аномальными электромагнитными эффектами, выделением энергии, превышающей подводимую, а после анализа образцов вновь застывшего металла там были найдены "чужеродные" химические элементы и странные структурные образования.
  3. В конце 90-х годов Л.И. Уруцкоевым (компания РЭКОМ, дочернее предприятие Курчатовского института) были получены необычные результаты электровзрыва титановой фольги в воде. Здесь открытие было сделано по классической схеме - получались неправдоподобные результаты обычных экспериментов (энергетический выход электровзрыва был слишком большим), и команда исследователей решила разобраться, в чём тут дело. То, что они нашли, их сильно удивило.
  4. Н.Г. Ивойлов (Казанский университет) совместно с Л.И.Уруцкоевым изучал мессбауэровские спектры железной фольги при воздействии на неё "странного излучения".
  5. В Киеве, в частной физической лаборатории "Протон-21" (http://proton-21.com.ua/) под руководством С.В. Адаменко, были получены экспериментальные свидетельства ядерного перерождения металла под воздействием когерентных пучков электронов. Начиная с 2000 года проведены тысячи экспериментов ("выстрелов") на цилиндрических мишенях небольшого (порядка миллиметра) диаметра, в каждом из которых происходит взрыв. внутренней части мишени, а в продуктах взрыва находится практически вся стабильная часть таблицы Менделеева, причём в макроскопических количествах, а также сверхтяжёлые стабильные элементы, наблюдаемые в истории науки впервые.
  6. Холодный ядерный синтез, Колдамасов А.И., 2005, При выявлении эмиссионных свойств некоторых диэлектрических материалов на гидродинамической установке для кавитационных испытаний (см. а/св2 334405) обнаружено, что при истечении пульсирующей диэлектрической жидкости с частотой пульсации около 1 КГц, через круглое отверстие, на входе жидкости в отверстие возникает электрический заряд большой плотности с потенциалом относительно земли более 1 миллиона вольт. Если использовать в качестве рабочего тела смесь легкой и тяжелой воды без примесей с удельным сопротивлением не ниже 1031 Ом*м в поле этого заряда можно наблюдать ядерную реакцию, параметры которой легко регулируются. При весовом соотношении легкой и тяжелой воды 100:1 наблюдалось: нейтронный поток от 40 до 50 нейтронов в секунду через сечение 1 см2, мощность 3 МЭВ, рентгеновское излучение от 0,9 до 1 мкР/сек при энергии излучения 0,3-0,4 МЭВ, образовывался гелий, тепловыделения. По совокупности наблюдаемых явлений можно заключить, что идут ядерные реакции. В данном конкретном случае диаметр отверстия в дроссельном устройстве был 1,2 мм, длина канала 25 мм, перепад на дроссельном устройстве 40-50 МПа, а расход жидкости через дроссельное устройство 180-200 г/сек. На единицу затраченной мощности выделялось 20 единиц полезной/в виде излучений и тепловыделений. По моему мнению, реакция ядерного синтеза возникает так: Поток жидкости движется по каналу. При приближении атомов дейтерия к заряду, под его воздействием они теряют электроны со своих орбит». Ядра дейтерия, заряженные положительно, под воздействием поля этого заряда отталкиваются в центр отверстия и удерживаются полем кольцевого положительного заряда. Концентрация ядер становится достаточной для того, чтобы происходили их столкновения, а импульс энергии, полученный от положительного заряда, настолько большой, что преодолевается Кулоновский барьер. Ядра сближаются, вступают во взаимодействия, идут ядерные реакции.
  7. В лаборатории «Энергетика и технология структурных переходов» к.т.н. А. В. Вачаев под руководством д.т.н. Н. И. Иванова с 1994 года исследовал возможность обеззараживания стоков производств путем воздействия на них интенсивного плазменного образования. Он работал с веществом  в разных агрегатных состояниях. Выявлено полное обеззараживание стоков и обнаружены побочные эффекты. Наиболее удачная силовая установка давала стабильный плазменный факел – плазмоид, при пропускании через который дистиллированной воды в большом количестве образовывалась суспензия металлических порошков, происхождение которых иначе, как процессом холодной ядерной трансмутации объяснить было невозможно. В течение ряда лет новое явление стабильно воспроизводилось при различных модификациях установки, в разных растворах, процесс демонстрировался авторитетным  комиссиям из Челябинска и Москвы, раздавались образцы получаемых осадков.
  8. Молодой физик И.С. Филимоненко создал гидролизную энергетическую установку, предназначенную для получения энергии от реакций «теплого» ядерного синтеза, идущих при температуре всего 1150 °C . Топливом для реактора служила тяжелая вода. Реактор представлял собой металлическую трубу диаметром 41 мм и длиной 700 мм, изготовленную из сплава, содержавшего несколько граммов палладия.

    Эта установка появилась на свет в результате исследований, проводившихся в 50-х годах в СССР в рамках государственной программы научно-технического прогресса. В 1989 г. было принято решение воссоздать в подмосковном НПО «Луч» 3 термоэмиссионные гидролизные энергетические установки мощностью по 12.5 кВт каждая. Это решение было мгновенно претворено в жизнь под руководством И.С. Филимоненко. Все три установки были подготовлены к сдаче в опытную эксплуатацию в 1990 г. При этом на каждый киловатт, вырабатываемый энергетическими установками теплого синтеза, приходилось всего 0.7 грамма палладия, на котором, как выяснилось позже, свет клином не сошелся.

  9. Эффект аномального увеличения выхода нейтронов неоднократно наблюдался в опытах по колке дейтериевого льда. В 1986 году академик Б.В. Дерягин с сотрудниками опубликовал статью, в которой были приведены результаты серии экспериментов по разрушению мишеней из тяжелого льда с помощью металлического бойка. В этой работе сообщалось, что при выстреле в мишень из тяжелого льда D2O при начальной скорости бойка 100, 200 - м/с регистрировалось 0.4, 0.08 - отсчета нейтронов соответственно. При выстреле в мишень из обычного льда H2O регистрировалось всего 0.15 0.06 - отсчета нейтронов. Указанные значения были приведены с учетом поправок, связанных с наличием фонового потока нейтронов.
  10. Ажиотажный взрыв интереса к обсуждаемой проблеме возник только после того, как М. Флейшман и С. Понс на пресс-конференции 23 марта 1989 года сообщили об обнаружении ими нового явления в науке, известного сейчас как холодный ядерный синтез (или синтез при комнатной температуре). Они электролитическим путем насыщали палладий дейтерием (попросту, воспроизвели результаты серии работ И.С. Филимоненко, доступ к которым имел С. Понс) - проводили электролиз в тяжелой воде с палладиевым катодом. При этом наблюдалось выделение избыточного тепла, рождение нейтронов, а также образование трития. В том же году было сообщение об аналогичных результатах, полученных в работе С. Джонса, Е. Палмера, Дж. Цирра и др.
  11. Эксперименты И.Б. Савватимовой
  12. Эксперименты Йосиаки Араты. На глазах у изумленной публики было продемонстрировано выделение энергии и образование гелия, не предусмотренные известными законами физики. В эксперименте Араты - Чжан в специальную ячейку был помещен размолотый до размеров 50 ангстрем порошок, состоящий из палладиевых нанокластеров, диспергированных внутри ZrO2 – матрицы. Исходный материал был получен посредством отжига аморфного сплава палладия с цирконием Zr 65 Pd35. После этого в ячейку под высоким давлением был закачан газообразный дейтерий.

 

Заключение

В заключение можно сказать:

Чем больше объем области где протекает ядерный синтез (при равной плотности исходного вещества), тем больше энергозатраты на его инициацию и соответственно больше энергетический выход. Не говоря уже о финансовых затратах, которые тоже пропорциональны размерам рабочей области.

Это характерно для «Горячего» термояда. Разработчики планируют получать с его помощью сотни мегаватт мощности.

 

В то же время существует малозатратный (во всех перечисленных выше направлениях) путь. Его имя LERN.

 


LENR
(англ.)Low-Energy Nuclear Reaction - низкоэнергетические ядерные реакции
 

 

Он использует возможности достижения необходимых для ядерного синтеза условий в микрообъемах и получение небольших, но достаточных для удовлетворения многих нужд мощностей (до мегаватта). В некоторых случаях возможно прямое преобразование энергии в электрическую. Правда, последнее время, такие мощности часто просто не интересуют энергетиков, градирни которых отправляют в атмосферу много большие мощности.

 

Пока нерешенной проблемой «горячего» и некоторых вариантов «холодного» ядерного синтеза остается проблема удаления продуктов распада из рабочей области. Что необходимо, поскольку они снижают концентрацию участвующих в ядерном синтезе исходных веществ. Что приводит к нарушению критерия Лоусона в «горячем» ядерном синтезе и «погасанию» реакции синтеза. В «холодном» ядерном синтезе, в случае циркуляции исходного вещества этого не происходит.



 

Литература:
№ пп Данные статьи Ссылка
1 Токамак, http://ru.wikipedia.org/wiki/Токамак
2 Управляемый термоядерный синтез http://ru.wikipedia.org/wiki/Управляемый термоядерный синтез
3 Цепная ядерная реакция http://ru.wikipedia.org/wiki/Цепная ядерная реакция
4 О сверхтяжелых элементах, Ю. Ц. Оганесян http://www.jinr.ru/section.asp?language=rus&sd_id=103
5 Образование наночастиц самородных металлов в результате естественного распада изотопов элементов, А.Я. Пшеничкин, Геоматериалы, 2010, Томский политехнический университет, Томск, I-07.pdf *
6 ЭКСПЕРИМЕНТАЛЬНОЕ ОБНАРУЖЕНИЕ "СТРАННОГО" ИЗЛУЧЕНИЯ И ТРАНСФОРМАЦИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ , Л.И. Уруцкоев*, В.И. Ликсонов*, В.Г. Циноев** "РЭКОМ" РНЦ "Курчатовский институт", 28 марта 2000 г http://jre.cplire.ru/jre/mar00/4/text.html
7 Трансмутация вещества по Вачаеву — Гриневу http://rulev-igor.narod.ru/theme_171.html
8 О ПРОЯВЛЕНИЯХ РЕАКЦИИ ХОЛОДНОГО ЯДЕРНОГО СИНТЕЗА В РАЗЛИЧНЫХ СРЕДАХ. Михаил Карпов  http://www.sciteclibrary.ru/rus/catalog/pages/8767.html
9 Ядерная физика в Интернете, Магические числа, глава из «Экзотические ядра» Б.С. Ишханов, Э.И. Кэбин http://nuclphys.sinp.msu.ru/exotic/e08.html
10 Демонстрационная методика синтеза элементов из воды в плазме электрического разряда, Паньков В.А., к.т.н.; Кузьмин Б.П., к.т.н. Институт металлургии Уральского отделения РАН http://model.susu.ru/transmutation/20090203.htm
11 Метод А.В. Вачаева – Н.И. Иванова http://model.susu.ru/transmutation/0004.htm
12 Дополнительные материалы по феномену Вачаева, Доклад к.т.н. Паньков В.А. и  к.т.н. Кузьмин Б.П.  http://rulev-igor.narod.ru/theme_172.html
13 Исключение третьего (о новом классе ядерных реакций), В.А.Жигалов http://www.second-physics.ru/node/16
14 РАСПРЕДЕЛЕНИЕ ПО ХИМИЧЕСКИМ ЭЛЕМЕНТАМ В ПРОДУКТАХ НИЗКОЭНЕРГЕТИЧЕСКОЙ ТРАНСМУТАЦИИ. НУКЛЕОСИНТЕЗ, Сочи-14, 2006г., Г.В.Мышинский, В.Д. Кузнецов, article_nuclearsynthesis_sochi-14_r.pdf *
15 Низкоэнергетическая трансмутация атомных ядер химических элементов, В.Д. Кузнецов, Г.В. Мышинский, г.Дубна, Московская обл., Россия article_nte_2authors_r.pdf *
16 Синтез сверхтяжелых элементов методом холодного слияния, З. Хофманн, Центр Гельмгольца по исследованию тяжелых ионов, 64291, Дармштадт, ул. Планка, Германия, Успехи химии, 78(12), 2009г. Full_text_Russian_version.pdf *
17 Низкоэнергетическая трансмутация атомных ядер химических элементов. Кузнецов В.Д., Мышинский Г.В., Пеньков Ф.М., Арбузов В.И., Жеменик В.И., Annales Fondation Louis de Broglie, Voume 28, no 2, 2008,  AFLB-LET RUS_A5.pdf *

    * файлы формата pdf можно найти в Интернет введя их название в поисковую строку

 

А. Данилович,

июль 2011

  Яндекс.Метрика

<<назад>> <<в начало>> <<на главную>>

Попасть прямо в разделы сайта можно здесь:

/Неизвестный процессор/Охлаждение ПК/Электроника для ПК/Linux/Проекты, идеи/Полезные советы/Разное/
/
Карта сайта/Скачать/Ссылки/Обои/Форум/Каталог/

 

При полном или частичном использовании материалов ссылка на "www.electrosad.ru" обязательна.
Ваши замечания, предложения, вопросы можно отправить автору через
гостевую книгу или
почтой.

Copyright © Sorokin A.D.©

2002-2012