Компьютер в нагрузку

Отрывок из статьи Олега Григорьева, журнала Компьютерра, №47, 2002

http://offline.computerra.ru/2002/472/22266/

www.electrosad.ru

Мой комментарий:

За эти годы злободневность и важность данной статьи не уменьшилась, а почитать ее в оригинале не всегда удается. Сегодня пошел на сайт по ссылке и получил ответ "страница не найдена". На мой взгляд, в организации систем электропитания пока ничего не изменилось. Энергосбытовые компании технические проблемы похоже не очень занимают. Пока у них основная работа это учет и распределение.

А теперь начало статьи:

 

Олег Григорьев - директор Центра электромагнитной безопасности (ЦЭМБ, www.tesla.ru).
Виктор Петухов - руководитель Электротехнического отделения ЦЭМБ, кандидат технических наук, член IEEE.
Василий Соколов - зам. руководителя Электротехнического отделения ЦЭМБ.
Игорь Красилов - ведущий инженер Электротехнического отделения ЦЭМБ.

 

Материальной основой современного информационного общества, безусловно, является компьютер. За минувшее десятилетие он не только изменил образ жизни и работы миллиардов людей, но и сформировал новые требования к технической инфраструктуре, обеспечивающей его собственное функционирование. Центр электромагнитной безопасности в последние три года исследовал состояние систем электроснабжения напряжением 0,4 кВ в крупнейших зданиях Москвы, содержащих компьютерные сети численностью от двадцати до более чем тысячи компьютеров. Анализ результатов измерений, подкрепленный анализом зарубежных научно-технических публикаций [1-3], а также общение с коллегами из IEEE (The Institute of Electrical and Electronics Engineers) привело нас к выводу, что Россия столкнулась с новой серьезнейшей проблемой. Суть ее состоит в том, что сети электроснабжения 0,4 кВ в зданиях, оснащенных компьютерной техникой, «заражены» высшими по отношению к промышленной частоте (50 Гц) гармониками.

Сразу заметим, что проблема не является чисто российской - все страны на определенном этапе концентрации компьютерной техники столкнулись с ней и были вынуждены принимать решительные меры, включая кардинальное изменение технических регламентов эксплуатации, норм проектирования и разработки соответствующих стандартов. С учетом того, что наша страна, в том числе благодаря реализации Федеральной программы «Электронная Россия», рассчитывает на многократное увеличение компьютерного парка, мы считаем, что актуальность проблемы будет возрастать.

Техническая подоплека вопроса в следующем. В недавнем прошлом большая часть электрической энергии потреблялась линейными нагрузками - лампами накаливания, нагревательными элементами (ТЭН), двигателями и другими подобными потребителями электроэнергии. С конца 1990-х годов резко возросла доля нелинейных электропотребителей. В первую очередь это персональные компьютеры и файл-серверы, мониторы, лазерные принтеры, блоки бесперебойного питания (UPS) и прочее офисное оборудование; газоразрядные лампы и другие нелинейные электропотребители. Дело в том, что для электропитания вышеперечисленной техники используются встроенные импульсные источники питания (рис. 1), представляющие собой нелинейные нагрузки, сопротивление которых изменяется с течением времени.

 

 
Рисунок 1

 

Ток, потребляемый этими источниками, имеет ярко выраженный импульсный характер. Это объясняется схемными особенностями импульсных источников питания, а именно наличием сетевого выпрямителя (диодного моста) и сглаживающего емкостного фильтра. При приближении кривой питающего напряжения к максимальному значению электронные вентили диодного моста скачкообразно меняют свое сопротивление от бесконечности до определенного малого значения. Такой характер изменения сопротивления вентиля равносилен включению или отключению им нагрузки. Таким образом, периодическое включение и отключение приводит к появлению коротких импульсов потребляемого тока (рис. 2, 3).

 

 
Рисунок 2

 

Эти токи представляют собой несинусоидальный периодический сигнал, который можно представить в виде суммы постоянной величины и бесконечного ряда синусоидальных сигналов с кратными частотами.

 


Рисунок 3

Рисунок 4
 

На рис. 3 кривая тока, потребляемого системным блоком компьютера, разложена в гармонический ряд. Хорошо видно, что третья гармоника составляет 80% от величины основной гармоники частотой 50 Гц. Такие синусоидальные составляющие называются гармоническими, или гармониками. Синусоидальная составляющая, период которой равен периоду промышленной частоты - 50 Гц, называется основной или первой гармоникой. Остальные составляющие синусоиды с частотами со второй по n-ую называют высшими гармониками.

Если мощность нелинейных электропотребителей не превышает 10-15%, сюрпризов при эксплуатации системы электроснабжения, как правило, не возникает. При превышении указанного предела следует ожидать различных проблем в эксплуатации, а также последствий, причины которых не являются очевидными. Для зданий, имеющих долю нелинейной нагрузки выше 25%, отдельные проблемы могут проявиться сразу.

Наличие высших гармонических составляющих в токах нелинейных электропотребителей приводит к следующим негативным, а в ряде случаев - и катастрофическим последствиям.

 

Перегрев нулевых рабочих проводников

Возможен и весьма вероятен перегрев и разрушение нулевых рабочих проводников кабельных линий вследствие их перегрузки токами третьей гармоники, когда токи в нулевых рабочих проводниках значительно превосходят токи фазных проводников, а защита от токовых перегрузок в цепях нулевых проводников не предусмотрена (п. 1.3.10 ПУЭ [5]). Необходимо также отметить ускоренное старение изоляции при повышении рабочей температуры токонесущих проводников.

Нулевой рабочий проводник не защищен от перегрева автоматическими выключателями либо предохранителями (п. 3.1.17 ПУЭ). «Старые» системы электроснабжения проектировались только под линейную нагрузку, то есть потребляемый электроприемниками ток в своем гармоническом составе содержал лишь основную гармонику (50 Гц). Следовательно, ток в нулевом рабочем проводнике не мог превосходить ток в наиболее нагруженной фазе, то есть защита, установленная на фазных проводниках, одновременно защищала от перегрева и нулевой рабочий проводник.

Кроме того, в процессе эксплуатации неравномерность распределения токов по фазам должна быть не более 10% (п. 6.6. табл. 6. Приложение 1 ПЭЭП), поэтому при определении длительно допустимых токов по условиям нагрева проводов и кабелей нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются (п. 3.1.10 ПУЭ), поскольку ток в этих проводниках при наличии линейных электропотребителей существенно меньше токов в фазных проводниках.

В случае нелинейных электропотребителей токи в нулевых рабочих проводниках превышают фазные (в пределе в 1,73 раза), поэтому значения длительно допустимых токов в случае нелинейных электропотребителей должны быть снижены.

Следует напомнить, из-за чего токи в нулевых рабочих проводниках могут быть большими, чем токи в фазных проводниках. Это объясняется тем, что при симметричной нагрузке фазные токи основной частоты и все высшие гармоники, за исключением высших гармоник порядка, кратного трем, образуют системы прямой и обратной последовательностей и дают в сумме нуль. Гармоники же порядка, кратного трем, образуют систему нулевой последовательности, то есть в любой момент времени имеют одинаковые значения и фазы. Поэтому ток в нейтральном проводе равен утроенной сумме токов высших гармоник, кратных трем. Таким образом, при несинусоидальной симметричной нагрузке ток в нулевом рабочем проводнике будет равен:

 

 

где I3, I9, I15 - действующие значения соответствующих гармоник тока.

При линейной, даже самой мощной нагрузке ток в нулевом рабочем проводнике будет меньше, чем максимальный ток в фазных проводниках. Совсем иная ситуация при наличии нелинейных нагрузок, в этом случае ток в нулевом рабочем проводнике может превышать ток в фазе более чем в 1,5 раза.

 


Рисунок 5

Рисунок 6

 

Об этом красноречиво говорят осциллограммы токов на фидерах питания компьютерных электропотребителей, представленные на рис. 4-7. Начиная с этих рисунков и далее все осциллограммы приводятся из базы данных Центра электромагнитной безопасности (www.tesla.ru) и получены на объектах г. Москвы.

 


Рисунок 7

Рисунок 8

 

Из приведенных осциллограмм видно, что действующее значение тока в нулевом рабочем проводнике In=105,7 А, а наибольшее действующее значение тока в фазе Ic=69,5 А.

 

Искажение синусоидальности напряжения

Полностью Вы можете почитать статью здесь.

 

 

Яндекс.Метрика

<<;назад>> <<в начало>> <<на главную>>

Попасть прямо в разделы сайта можно здесь:

/Неизвестный процессор/Охлаждение ПК/Электроника для ПК/Linux/Проекты, идеи/Полезные советы/Разное/
/
Карта сайта/Скачать/Ссылки/Обои/

При полном или частичном использовании материалов ссылка на "www.electrosad.ru" обязательна.
Ваши замечания, предложения, вопросы можно отправить автору
почтой.

Copyright © Sorokin A.D.

2002 - 2020